Science

Drug-resistant bacteria mapped

Genome sequencing of pneumonia-causing bacteria may lead to new antibiotics

Drug-resistant bacteria mapped

The genomes of hundreds of bacterial strains that cause pneumonia have been sequenced and may lead to new antibiotics and vaccines.

240 lineages of multidrug resistant Streptococcus pneumoniae were collected from around the world and their genomes sequenced in order to understand how the bacteria came to be so virulent.

The research, published in the journal Science this week, compared the genetic sequences with the geographic locations of each specimen to produce a map of the major evolutionary events that have led to the diversity we see today. The team of scientists also pinpointed Europe as the probable birthplace of the first multidrug resistant individual.

The researchers also identified recombination as the dominant mechanism the bacteria have used to evolve resistance to antibiotic drugs. Recombination involves individual pieces of DNA moving around the bacterial genome, and in doing so creates new genes. Some of these recombinations will result in the bacteria becoming resistant. Many of these drug resistant genes can pass horizontally, from bacteria to bacteria, and could explain how drug resistance has spread so quickly across the globe.

Four million cases of fatal pneumococcal disease are reported each year, and, according to the World Health Organisation, is responsible for an estimated 18% of all deaths of children under the age of 5.

The research was created thanks to a partnership between the Sanger Institute, a world leader in genomic analysis, and scientists from Rockafeller University studying the patterns of illness around the world. Alexander Tomaz, co-author of the paper, praised the unusual collaboration. “Such an alliance between molecular biology and epidemiology promises further interesting insights into the mechanism of bacterial evolution”.

Professor Brian Spratt, a molecular epidemiologist at Imperial highlighted the importance of this research, saying: “how bacteria diversify over the very short time scales [...] are of crucial importance for understanding and predicting the response of pathogens to new antibiotics and vaccines.”

From Issue 1481

4th Feb 2011

Discover stories from this section and more in the list of contents

Explore the edition

Read more

Peter Haynes to take over Provost role in October

News

Peter Haynes to take over Provost role in October

Professor Peter Haynes has been appointed as the new Provost and Deputy President of Imperial College. The current  Vice-Provost for Education and Student Experience, Haynes will succeed the outgoing Provost, Professor Ian Walmsley, who has served in the role since 2018. Imperial President Hugh Brady said Professors Haynes and Walmsley

By Guillaume Felix
Why RAG’s bungee jump event never took place

News

Why RAG’s bungee jump event never took place

Earlier this academic year, Imperial Raising and Giving (RAG), had announced the return of their charity bungee jump after a hiatus of 10 years. The event, however, was postponed several times, and Felix can now reveal why it was cancelled. The event, initially scheduled for November 13th, was postponed several

By Mohammad Majlisi and Nadeen Daka
Palestine protests ramp up as year ends and tensions rise

News

Palestine protests ramp up as year ends and tensions rise

Saturday 7th June: Pro-Palestinian protestors hold banners as they stand on ALERT at the Great Exhibition Road Festival. Tuesday 10th June: A student announces a hunger strike asking for Imperial to investigate Islamophobia and anti-Arab racism, form a student-staff working group on ethical investment, and divest from arms companies accused

By Mohammad Majlisi